Table II
Properties of 1,3,5-Trinitrobenzene Anducts of Indole-3-acetic Acid and of Several Esters of Indole-3-acetic Acid

\quadTrinitrobenzene derivative of	M.p.,	Color	Formula
Indole-3-acetic acid	199 dec.	Orange	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{8}$
Methyl ester	135	Yellow	$\mathrm{C}_{17} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{8}$
Ethyl ester	88	Yellow	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{8}$
n-Propyl ester	11.	Yellow	$\mathrm{C}_{19} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{8}$
n-Butyl ester	101	Yellow	$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{8}$
n-Amyl ester	96	Yellow	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8}$

C	H	N	C	H	N
49.5	3.1	14.4	49.7	2.9	14.4
50.8	3.6	13.9	50.8	3.6	13.6
51.9	3.9	13.5	51.9	3.8	13.4
53.0	4.2	13.0	53.2	4.4	13.2
54.1	4.5	12.6	54.4	4.4	12.8
55.0	4.8	12.2	54.9	5.0	12.1

Preparation of the Addition Products. ${ }^{5--}$ One millimole of the indole-3-acetic acid derivative and one millimole of $1,3,5$-trinitrobenzene were dissolved in 10 ml . of hot absolute ethanol and placed in the refrigerator to cool. The crystals which formed were recrystallized once from absolute ethanol and dried at room temperature in vacuo over phosphorus pentoxide prior to analysis. The properties of these derivatives are shown in Table II.
(5) J. J. Sudborough, J. Chem. Soc., 109, 1339 (1916)

Departments of Agricultural Chemistry
and Horticulture
Michigan State College
East Lansing, Mich.
Received January 9, 1951

A Preparative Method for Thiosemicarbazones of Aromatic Aldehydes ${ }^{1}$

By Bruno Puetzer, William E. Hamlin ${ }^{2}$ and Leon Katz

In the course of experiments designed to prepare chemotherapeutically active thiosemicarbazones a new method was sought which would eliminate the use of thiosemicarbazide. It has been found that an aqueous solution of hydrazinium thiocyanate will react with aromatic aldehydes in the presence of acetic acid to give the respective thiosemicarbazones directly. The products listed in Table

I were prepared this way and compared with products made from the aromatic aldehyde and thiosemicarbazide.

Table I
Benzaldehyde Thiosemicarbazones

Benzaldehyde	Yield, \%	${ }_{a}^{\mathrm{M} .}$	$\mathrm{dec}_{{ }_{b}}$
$4-\mathrm{CH}_{3} \mathrm{CONH}$	86	234-236	235-236
$4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$	97	211-214	214-215
$4-\mathrm{OH}$	88	229-231	231-232
$2-\mathrm{OH}$	81	220-223	228-229
$4-\mathrm{NO}_{2}$	86	247-249	257-259

a Material isolated directly from reaction mixture, not recrystallized. ${ }^{b}$ Recrystallized material prepared by condensation of thiosemicarbazide and the respective benzaldehyde. All melting points were uncorrected.

Experimental

Preparation of Hydrazinium Thiocyanate Solution.-Into a $4-1$. beaker were charged 485 g . (5.0 moles) potassium thio-
(1) After the completion of this work a report by Stig Sunner (C. A.. 45, 548b (1951)) appeared which described the reaction of hydrazinium thiocyanate with acetone to yield acetone thiosemicarbazone. At least twa products were formed in this reaction whereas we obtained only the respective thiosemicarbazone under the conditions described in the experimental section with the exception of 4 -nitrobenzaldehyde. In this case less than 5% of azine was isolated
(2) The Upjohu Co., Kalaruazoo, Mich
cyanate, 425 g . (95% real, 2.50 moles real) dihydrazine sulfate, and 11 . of water. The mixture was stirred and heated to 95° in 20 minutes, held at 95° five minutes, and cooled to 10° in three-quarter hour. The white slurry of potassium sulfate was collected on a Büchner funnel containing a thin bed of filter-cel, sucked well and the cake washed with 50 ml . of water. The volume of the filtrate was 1335 ml ., equivalent to 0.00375 mole of hydrazinium thiocyanate per ml . This solution was used without further analysis.

4-Dimethylaminobenzaldehyde Thiosemicarbazone.Into a $500-\mathrm{ml}$. three-necked flask equipped with a glas-col mantle, sealed stirrer, reflux condenser and thermometer were charged 28.5 g . (0.191 mole) of dimethylaminobenzaldehyde and 150 ml . of glacial acetic acid. This mixture was stirred and heated to 100°. Ninety-five ml. of the hydrazinium thiocyanate solution described above (0.356 mole) was heated to 100° and added to the acetic acid solution. After five minutes a red precipitate began to appear. The slurry was held at $95-100^{\circ}$ for one hour longer, cooled to 10°, and filtered through a Büchner funnel. The cake was washed with 500 ml . of water and dried in vacuo at 65° for 15 hours. The weight of solid, m.p. 211-214 ${ }^{\circ}$ dec., was 40.7 g . An additional 0.5 g . of material was obtained from the filtrate.

As a solvent for the aromatic aldehydes ethanolic acetic acid of varying composition can be employed. A series of experiments were run with 4 -acetylaminobenzaldehyde to determine the optimum usage of hydrazinium thiocyanate. An excess of $25-50 \%$ appeared to give the optimum yields.

Fractional crystallization from glacial acetic acid of the thiosemicarbazone formed from 4-nitrobenzaldehyde led to the isolation of a small quantity of azine; m.p. 307-309 ${ }^{\circ}$ A nal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N}_{4}: \mathrm{C}, 56.38 ; \mathrm{H}, 3.36 ; \mathrm{N}, 18.78$. Found: C, $56.50 ; \mathrm{H}, 3.30 ; \mathrm{N}, 18.97$.
Schenley Laboratories. Inc.
Lamerenceburg, Ind. Received February 1, 1951

The Double Sulfates of Zirconium and the Bivalent Metals

By S. R. Patel

A series of compounds of the type $\mathrm{RSO}_{4} \cdot \mathrm{Zr}$ $\left(\mathrm{SO}_{4}\right)_{2}$ (where $\mathrm{R}=$ a bivalent metal) has been prepared (Table I). The compound $\mathrm{MgSO}_{4} \cdot \mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2}$ a typical example, was obtained by heating together 0.1 g . of zirconium nitrate ($=0.04 \mathrm{~g}$. zirconia) and 0.025 g . to 0.4 g . of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in 40 cc . of sulfuric acid (sp. gr. 1.79). A clear solution was first obtained from which on further concentration a precipitate separated which after washing free from adhering sulfuric acid with absolute alcohol and then drying at 230° agreed with the formula Mg $\mathrm{SO}_{4} \cdot \mathrm{Zr}\left(\mathrm{SO}_{4}\right)_{2}$.

R	Table I					
	R	$\stackrel{l e d}{l e d}$	So	R	zr	SO4
Mg	6.024	22.59	71.39	5.58	22.73	71.60
Zn	14.70	20.50	64.79	15.11	20.18	65.05
Cd	22.85	18.55	58.60	22.63	18.51	58.54
Co	13.45	20.81	65.75	13.82	20.71	66.05
Mn	12.65	21.00	66.36	12.48	21.19	66.5

